skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zamani_Kouhpanji, Mohammad_Reza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic nanowires (MNWs) rank among the most promising multifunctional magnetic nanomaterials for nanobarcoding applications, especially biolabeling, owing to their nontoxicity and remote excitation using a single magnetic source. Until recently, the first-order reversal curve (FORC) technique has been broadly used to study the MNWs for biolabeling applications. However, since FORC measurements require many data points, this technique is very slow which makes it inapplicable for clinical use. For this reason, we recently developed a fast new framework, named the projection method, to measure the irreversible switching field (ISF) distributions of MNWs as the magnetic signature for the demultiplexing of magnetic biopolymers. Here, we illustrate the ISF distributions of several MNWs types in terms of their coercivity and interaction fields, which are characterized using both FORC and projection methods. Then, we explain how to tailor the ISF distributions to generate distinct signature to reliably and quantitatively demultiplex the magnetically enriched biopolymers. 
    more » « less